waterborne pathogens may be present or that a potential pathway.

When this occurs, we are required to conduct assessments to identify and correct any problems.

During the past year, we were required to conduct one Level 1 distribution system.

For more information about this report, or for any questions, please contact Assistant Superintendent, at (973) 744-4600.

leading to the need for

Between January 1 and December 31, 2022. Over the years, we have dedicated ourselves to producing and distributing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting in your pipes, the composition of your water can change, which may affect the taste and smell of your water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or www.epa.gov/lead.

Some grease-resistant paper, fast food containers/wrappers, microwave popcorn bags, pizza boxes, and aluminum cans can contain PFAS. Stain-resistant coatings used on carpets, upholstery, and other fabrics may also contain PFAS. Paints, varnishes, and sealants are also sources of PFAS. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals used worldwide since the 1950s to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. During production and use, PFAS can migrate into the soil, water, and air. Most PFAS do not break down easily and can persist for years, which means that they can accumulate in the environment and in organisms that eat them. The most commonly studied PFAS are perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). PFOA and PFOS are found in many water systems across the United States, but other countries may still manufacture and use them. The United States Environmental Protection Agency (USEPA) is monitoring and regulating PFAS in drinking water, but as of now, there is no action level for PFAS. To learn more about PFAS, visit the USEPA’s website at www.epa.gov/groundwater-aquifers/pfas.

High-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting in your pipes, the composition of your water can change, which may affect the taste and smell of your water.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or www.epa.gov/lead.

Some grease-resistant paper, fast food containers/wrappers, microwave popcorn bags, pizza boxes, and aluminum cans can contain PFAS. Stain-resistant coatings used on carpets, upholstery, and other fabrics may also contain PFAS. Paints, varnishes, and sealants are also sources of PFAS. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals used worldwide since the 1950s to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. During production and use, PFAS can migrate into the soil, water, and air. Most PFAS do not break down easily and can persist for years, which means that they can accumulate in the environment and in organisms that eat them. The most commonly studied PFAS are perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). PFOA and PFOS are found in many water systems across the United States, but other countries may still manufacture and use them. The United States Environmental Protection Agency (USEPA) is monitoring and regulating PFAS in drinking water, but as of now, there is no action level for PFAS. To learn more about PFAS, visit the USEPA’s website at www.epa.gov/groundwater-aquifers/pfas.

The sources of drinking water (both tap water and bottled water) may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; include:

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater or gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources, including farming, urban stormwater, and waste disposal;

Organic Chemical Contaminants, including synthetic organic chemicals, priority pollutants, and industrial chemicals; and

Microbiological Contaminants, such as bacteria, viruses, and parasites, which can be present in source water from various sources, including water treatment facilities, domestic sewage systems, or domestic sources.

The presence of these contaminants does not necessarily indicate that the water poses a health risk. However, it is important to monitor the levels of contaminants in drinking water to ensure that tap water is safe to drink. The USEPA and state and local health agencies have established standards for the presence of contaminants in drinking water to protect public health. If you are a landlord, you must distribute this CCR to every tenant as soon as practicable, but no later than three business days after the date on which you receive the CCR. If you need extra copies, you may request them from the USEPA regional office. To learn more about contaminants in drinking water, visit the USEPA’s website at www.epa.gov/groundwater-aquifers.

Safeguard Your Drinking Water

Where Do We Get Our Drinking Water?

The Town of Montclair and the Borough of Glen Ridge are served by Montclair Waterworks, a public water system. The system also includes 3 municipal wells, one in each of the 3 pressure zones, and 5-15 surface water supply wells. These wells were updated with carbon absorbers in the near future. No wells will operate without carbon treatment. The Town of Montclair and the Borough of Glen Ridge also receive water from the nearby Nutley Waterworks, which provides water to parts of Nutley, Bloomfield, and Belleville. The water supplies to Montclair & Glen Ridge are blended to provide a consistent water supply.

The sources of drinking water (both tap water and bottled water) may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife; include:

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater or gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources, including farming, urban stormwater, and waste disposal;

Organic Chemical Contaminants, including synthetic organic chemicals, priority pollutants, and industrial chemicals; and

Microbiological Contaminants, such as bacteria, viruses, and parasites, which can be present in source water from various sources, including water treatment facilities, domestic sewage systems, or domestic sources.

The presence of these contaminants does not necessarily indicate that the water poses a health risk. However, it is important to monitor the levels of contaminants in drinking water to ensure that tap water is safe to drink. The USEPA and state and local health agencies have established standards for the presence of contaminants in drinking water to protect public health. If you are a landlord, you must distribute this CCR to every tenant as soon as practicable, but no later than three business days after the date on which you receive the CCR. If you need extra copies, you may request them from the USEPA regional office. To learn more about contaminants in drinking water, visit the USEPA’s website at www.epa.gov/groundwater-aquifers.

Safeguard Your Drinking Water

Where Do We Get Our Drinking Water?

The Town of Montclair and the Borough of Glen Ridge are served by Montclair Waterworks, a public water system. The system also includes 3 municipal wells, one in each of the 3 pressure zones, and 5-15 surface water supply wells. These wells were updated with carbon absorbers in the near future. No wells will operate without carbon treatment. The Town of Montclair and the Borough of Glen Ridge also receive water from the nearby Nutley Waterworks, which provides water to parts of Nutley, Bloomfield, and Belleville. The water supplies to Montclair & Glen Ridge are blended to provide a consistent water supply.
A measure of A required process is the concentration of copper, which represents the 90th percentile of the total number of sites tested. The 90th percentile is the highest level of a disinfectant treatment or other requirements which a water system is expected to meet, and if possible, exceed. MCLs (Maximum Contaminant Levels) and MCLGs (Maximum Contaminant Level Goals) are set as close to the natural concentrations of substances in water as possible, to protect public health. MCLGs allow for a margin of safety.

The benefits of the use of disinfectants to control microbial contaminants are evidenced by the addition of a disinfectant being necessary for control of microbial contaminants. Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits, discharge from industrial chemical factories, and photographic films are all potential sources of naturally occurring substances in drinking water.

Radioactivity, ppb (parts per billion), Alkalinity, Iron, Manganese, Odor, 1-Butanol, and Naturally occurring substances are all substances that can be found in drinking water, and the concentration of these substances can affect the quality and safety of the water. The concentration of these substances can be measured using various analytical methods, such as gravimetric analysis or spectrophotometry.

TYPICAL SOURCE

<table>
<thead>
<tr>
<th>Substance</th>
<th>Low-High Range</th>
<th>Sampled Year</th>
<th>Amount Detected (ppb)</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Butanol</td>
<td>2.9–34.4</td>
<td>2022</td>
<td>10</td>
<td>No</td>
</tr>
<tr>
<td>Iron</td>
<td>0.09–1.03</td>
<td>2022</td>
<td>35.0</td>
<td>No</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.49</td>
<td>2022</td>
<td>50</td>
<td>No</td>
</tr>
<tr>
<td>Odor</td>
<td>6.5–8.5</td>
<td>2022</td>
<td>100.82</td>
<td>No</td>
</tr>
<tr>
<td>Naturally occurring substances</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

In our community, tap water samples were collected for lead and copper analyses from sample sites throughout the community. The results of these analyses were then compared to the USEPA’s standards for lead and copper in drinking water. In this case, no violations were detected, and the water system is not in violation of the Stage 2 regulatory requirements for lead and copper.

In our water analysis, no evidence of lead was detected, and the water system is not in violation of the Stage 2 regulatory requirements for lead. In this case, no violations were detected, and the water system is not in violation of the Stage 2 regulatory requirements for lead. In our water analysis, no evidence of copper was detected, and the water system is not in violation of the Stage 2 regulatory requirements for copper.